Kamis, 08 Desember 2011

jadwal liga italia

jika anda ingin tahu jadwal liga italia klik disini

yahoo

jika anda ingin ke yahoo klik disini

jadwal liga spanyol

jika anda ingin tahu jadwal liga spanyol klik disini

jadwal liga inggris

jika anda ingin tahu jadwal liga inggris klik disini

google

jika ingin ke google klik disini!

facebook

jika ingin ke facebook klik disini

Grounding

Sistem ini biasa disebut sebagai grounding atau Instalasi grounding. Sistem grounding ini sudah banyak orang yang menggunakannya. Bahkan di setiap bangunan-bangunan atau kantor-kantor sudah mekakai system grounding ini. Untuk daerah-daerah di pedalamanpun system grounding sudah di pasang, karena di dataran yang luaspun bisa terkena sambaran petir. Oleh karena itu system grounding cukup besar manfaatnya baik untuk bangunan atau alat yang ingin kita lindungi maupun nyawa kita sendiri.

Grounding merupakan sistem pengamanan terhadap perangkat-perangkat yang mempergunakan listrik sebagai sumber tenaga, dari lonjakan listrik, petir dll. Grounding sistem pentanahan di data center menjadi salah satu unsur penting dalam data center karena sistem grounding ini memberikan kebutuhan tenaga utama bagi data center. Standar pentanahan grounding untuk data center tercantum dalam beberapa dokumentasi grounding antara lain : TIA-942, J-STD-607-A-2002 dan IEEE Std 1100 (IEEE Emerald Book), IEEE Recommended Practice Grounding for Powering and Grounding Electronic Equipment.

Tujuan utama dari adanya grounding sistem pentanahan ini adalah untuk menciptakan sebuah jalur yang low-impedance (tahanan rendah) terhadap permukaan bumi untuk gelombang listrik dan transient voltage. Penerangan, arus listrik, circuit switching dan electrostatic discharge adalah penyebab umum dari adanya sentakan listrik atau transient voltage. Grounding sistem pentanahan yang efektif akan meminimalkan efek tersebut.

Kenapa Perlu Grounding Yang Bagus ?
Berikut ada beberapa alasan mengapa grounding yang bagus sangat kita perlukan :

1. Grounding mengurangi kemungkinan terjadinya kerusakan akibat dari Sambaran petir

2. Grounding mencegah terjadinya Lonjakan Listrik (Spike)

3. Grounding mencegah terjadinya loncatan yang ditimbulkan adanya perbedaan potensial tegangan antara satu system pentanahan dengan yang lainnya.

Standar Nilai Grounding yang di syaratkan untuk kelistrikan :

* Grounding Tegangan Phase - Netral ≈ 220 Volt AC

* Grounding Tegangan Phase – Ground ≈ 220 Volt AC

* Grounding Tegangan Netral – Ground ≈ 1 Volt AC

* Grounding Nilai toleransi ≈ 3 %

* Ukuran Gronding ≈ 1 Ohm

Kamis, 01 Desember 2011

MCB

MCB bekerja dengan cara pemutusan hubungan yang disebabkan oleh aliran listrik lebih dengan menggunakan electromagnet/bimetal. cara kerja dari MCB ini adalah memanfaatkan pemuaian dari bimetal yang panas akibat arus yang mengalir untuk memutuskan arus listrik. Kapasitas MCB menggunakan satuan Ampere (A), Kapasitas MCB mulai dari 1A, 2A, 4A, 6A, 10A, 16A, 20A, 25A, 32A dll.  MCB yang digunakan harus memiliki logo SNI pada MCB tersebut
Cara mengetahui daya maximum dari MCB adalah dengan mengalikan kapasitas dari MCB tersebut dengan 220v ( tegangan umum di Indonesia ).
contoh
Untuk MCB 6A mempunyai kapasitas menahan daya listrik sebesar :
6A x 220v = 1.200 Watt
Beberapa kegunaan MCB :
  1. Membatasi Penggunaan Listrik
  2. Mematikan listrik apabila terjadi hubungan singkat ( Korslet )
  3. Mengamankan Instalasi Listrik
  4. Membagi rumah menjadi beberapa bagian listrik, sehingga lebih mudah untuk mendeteksi kerusakan instalasi listrik
Cara menentukan penyebab MCB turun
cara menyentuh bagian putih dari MCB, apakah panas atau tidak.
  1. Apabila tidak panas,
Kemungkinan ada bagian instalasi yang korslet, biasanya bila instalasi yang korslet tersebut telah di perbaiki, MCB langsung dapat dinyalakan. Jika sesudah beberapa menit MCB tersebut tetap tidak bisa dinyalakan kembali, artinya MCB tersebut sudah rusak
  1. Apabila panas
Itu menandakan MCB mengalami kelebihan beban dalam waktu yang cukup lama, tunggu beberapa menit baru menyalakan MCB tersebut, biasanya apabila langsung di nyalakan, MCB akan langsung turun kembali, hal ini disebabkan oleh BiMetal yang memuai dan membutuhkan waktu untuk kembali ke bentuk semula. Bila sesudah beberapa menit, MCB tersebut tetap tidak bisa dinyalakan, artinya MCB tersebut sudah rusak

Kamis, 24 November 2011

Prinsip Kerja Timer

Arus Masuk Pada In Put Kontaktor Magnet & Juga Pada In Put Timer Yang Akan Menjalankan Timer / Pewaktu, Setelah Waktu Berputar Dan Sudah Sampai Pada Waktunya Terhubung ( Waktunya ON ) Maka Kontak Di Dalam Timer Akan Terhubung Dengan Out Put Timer Dan Aruspun Akan Mengalir Menuju Kontaktor Magnet ( Kontak a & b ) Yang Akan Menarik Kontak – Kontak Pada Kontaktor Magnet Sehingga Kontak In Put Pada Kontaktor Magnet Terhubung Dengan Kontak Out Put Pada Kontaktor Magnet, Sehingga Arus In Put Dapat Melewati Out Put Kontaktor Magnet Yang Akan Menjalankan Beban Pada Out Put Tersebut. Setelah Waktu / Jam Berputar Terus Maka Tiba Saatnya Timer Memutuskan Hubungan ( Waktunya OFF ) Maka Aruspun Terputus Yang Melewati Kontaktor Magnet Sehingga Beban Pada Out Put Kontaktor Magnet Juga Tidak Berjalan, Proses Tersebut Terjadi Terus Menerus Apabila Tidak Terjadi Pemadaman Listrik Pada Jaringan PLN. Apabila Settingan Waktu ON - OFF Misalkan Jam 18 - 6 Maka Pada Waktu Masuk Jam 18 Timer Terhubung Dengan Out Put Timer Sampai Jam 6, Karena Jam 6 Disini Di Gunakan Untuk Memutuskan Timer Sehingga Out Put Timer Tidak Terhubung.

Kamis, 10 November 2011

Jenis Kontaktor dan Pengoperasian Motor 3 Fase dengan Sistim Kendali Elektromagnetik

       
Gb. Kontaktor Magnet

Dalam mengoperasikan motor 1 fasa dengan kendali elektromagnetik, dibutuhkan kontaktor magnet, MCB, dan tombol ON/ OFF (saklar tekan) untuk alat kontrolnya. Dengan kontaktor magnet, motor 1 fasa jenis split phasa dapat dijalankan dari jarak jauh, kontaktor dapat diletakkan pada tempat yang jauh dari operator. Sedangkan operator hanya mengendalikan tombol start untuk menjalankan dan tombol stop untuk mengendalikan. Dengan demikian operator dapat bekerja ditempat yang aman.
Dari gambar rangkaian kontrol dan daya, terlihat kontak-kontak kontaktor magnet dipakai sesuai keperluannya. Pada rangkaian kontrol, fasa dihubungkan ke MCB 1 fase, kemudian melalui tombol OFF, menuju ke tombol ON, yang kemudian menuju coil pada kontaktor dan berakhir di netral, karena sakelar ON yang digunakan merupakan sakkelar tombol, maka dipakai sakelar pengunci/ bantu yang terhubung pararel ke kontak bantu kontaktor NO (Normally Open). Sedangkan pada rangkaian daya, perjalanannya yaitu dari Fasa melalui MCB dan menuju ke kontaktor (pada kontak utama), dan dari kontak utama menuju motor 1 fasa. Salah satu masukan kontak utama pada kontaktor dihubungkan melalui sumber netral dan keluarannya dihubungkan ke motor listrik.
Sistem pengontrolan motor listrik semi otomatis yang menggunakan alat kontrol kontaktor magnet memerlukan alat bantu lain agar fungsi pengontrolan berjalan dengan baik seperti: tombol tekan, thermal overload relay dan alat bantu lainnya. Kontaktor magnet banyak digunakan untuk mengontrol motor-motor listrik 1 fasa dan 3 fasa, anatara lain untuk mengontrol motor dua arah putaran, strating bintang-segitiga, beberapa unit motor bekerja dan berhenti berurutan dan lain-lain.

A. Kontaktor Magnet
Kontaktor magnet atau sakelar magnet adalah sakelar yang bekerja berdasarkan kemagnetan. Artinya sakelar ini bekerja bila ada gaya kemagnetan. Magnet berfungsi sebagai penarik dan pelepas kontak-kontak. Sebuah kontaktor harus mampu mengalirkan arus dan memutuskan arus dalam keadaan kerja normal. Arus kerja normal ialah arus yang mengalir selama pemutusan tidak terjadi. Sebuah kontaktor kumparan magnetnya (coil) dapat dirancang untuk arus searah (arus DC) atau arus bolak-balik (arus AC). Kontaktor arus AC ini pada inti magnetnya dipasang cincin hubung singkat, gunanya adalah untuk menjaga arus kemagnetan agar kontinu sehingga kontaktor tersebut dapat bekerja normal. Sedangkan pada kumparan magnet yang dirancang untuk arus DC tidak dipasang cincin hubung singkat.

1. Kontaktor Magnet Arus Searah (DC)
Kontaktor magnet arus searah (DC) terdiri dari sebuah kumparan yang intinya terbuat dari besi. Jadi bila arus listrik mengalir melalui kumparan, maka inti besi akan menjadi magnet. Gaya magnet inilah yang digunakan untuk menarik angker yang sekaligus menutup/ membuka kontak. Bila arus listrik terputus ke kumparan, maka gaya magnet akan hilang dan pegas akan menarik/menolak angker sehingga kontak kembali membuka atau menutup.
Untuk merancang kontaktor arus searah yang besar dibutuhkan tegangan kerja yang besar pula, namun hal ini akan mengakibatkan arus yang melalui kumparan akan besar dan kontaktor akan cepat panas. Jadi kontaktor magnet arus searah akan efisien pada tegangan kerja kecil seperti 6 V, 12 V dan 24 V.Bentuk fisik relay dikemas dengan wadah plastik transparan, memiliki dua kontak SPDT (Single Pole Double Throgh) Gambar 2.1, satu kontak utama dan dua kontak cabang). Relay jenis ini menggunakan tegangan DC 6V, 12 V, 24 V, dan 48 V. Juga tersedia dengan tegangan AC 220 V. Kemampuan kontak mengalirkan arus listrik sangat terbatas kurang dari 5 ampere. Untuk dapat mengalirkan arus daya yang besar untuk mengendalikan motor induksi, relay dihubungkan dengan
Bila kontaktor untuk arus searah digunakan pada arus AC maka kemagnetannya akan timbul dan hilang setiap saat mengikuti gelombang arus AC.

1. Kontaktor Magnet Arus Bolak balik (AC)
Kontruksi kontaktor magnet arus bolak-balik pada dasarnya sama dengan kontaktor magnet arus searah. Namun karena sifat arus bolak-balik bentuk gelombang sinusoida, maka pada satu periode terdapat dua kali besar tegangan sama dengan nol. Jika frekuensi arus AC 50 Herz berarti dalam 1 detik akan terdapat 50 gelombang. Dan 1 periode akan memakan waktu 1/50 = 0,02 detik yang menempuh dua kali titik nol. Dengan demikian dalam 1 detik terjadi 100 kali titik nol atau dalam 1 detik kumparan magnet kehilangan magnetnya 100 kali.
Karena itu untuk mengisi kehilangan magnet pada kumparan magnet akibat kehilangan arus maka dibuat belitan hubung singkat yang berfungsi sebagai pembangkit induksi magnet ketika arus magnet pada kumparan magnet hilang. Dengan demikian maka arus magnet pada kontaktor akan dapat dipertahankan secara terus menerus (kontinu).
Bila kontaktor yang dirancang untuk arus AC digunakan pada arus DC maka pada kumparan itu tidak timbul induksi listrik sehingga kumparan menjadi panas. Sebaliknnya, bila kontaktor magnet untuk arus DC yang tidak mempunyai belitan hubung singkat diberikan arus AC maka pada kontaktor itu akan bergetar yang disebabkan oleh kemagnetan pada kumparan magnetnya timbul dan hilang setiap 100 kali.



Kontaktor akan bekerja normal bila tegangannya mencapai 85 % dari tegangan kerja, bila tegangan turun kontaktor akan bergetar.
Ukuran dari kontaktor ditentukan oleh batas kemampuan arusnya. Biasanya pada kontaktor terdapat beberapa kontak, yaitu kontak normal membuka (Normally Open = NO) dan kontak normal menutup (Normally Close = NC). Kontak No berarti saat kontaktor magnet belum bekerja kedudukannya membuka dan bila kontaktor bekerja kontak itu menutup/ menghubung. Sedangkan kontak NC berarti saat kontaktor belum bekerja kedudukan kontaknya menutup dan bila kontaktor bekerja kontak itu membuka. Jadi fungsi kerja kontak NO dan NC berlawanan. Kontak NO dan NC bekerja membuka sesaat lebih cepat sebelum kontak NO menutup.Fungsi dari kontak-kontak dibuat untuk kontak utama dan kontak bantu. Kontak utama terdiri dari kontak NO dan kontak bantu terdiri dari kontak NO dan NC. Kontak utama digunakan untuk mengalirkan arus utama, yaitu arus yang diperlukan untuk pesawat pemakai listrik misalnya motor listrik, pesawat pemanas dan sebagainya. Sedangkan kontak bantu digunakan untuk mengalirkan arus bantu yaitu arus yang diperlukan untuk kumparan magnet, alt bantu rangkaian, lampu-lampu indikator, dan lain-lain.
Dari informasi diatas dapat dilihat bahwa keuntungan penggunaan kontaktor magnet daripada saklar togel dan saklar Cam adalah,
* Arus listrik yang mengalir pada saklar pengontrol sangat kecil dibandingkan arus beban.
* Dapat mengontrol beban listrik dari tempat jauh dengan kerugian tegangan yang relatif kecil.

Kamis, 27 Oktober 2011

SEJARAH PLC

Kontrol logika terprogram (Bahasa Inggris: programmable logic controller atau PLC) adalah suatu mikroprosesor yang digunakan untuk otomasi proses industri seperti pengawasan dan pengontrolan mesin di jalur perakitan suatu pabrik. PLC memiliki perangkat masukan dan keluaran yang digunakan untuk berhubungan dengan perangkat luar seperti sensor, relai, contactor dll. Bahasa pemrograman yang digunakan untuk mengoperasikan PLC berbeda dengan bahasa pemrograman biasa. Bahasa yang digunakan adalah Ladder, yang hanya berisi input-proses-output. Disebut Ladder, karena bentuk tampilan bahasa pemrogramannya memang seperti tampilan tangga. Disamping menggunakan pemrograman ladder, PLC juga dapat diprogram dengan pemrograman SFC dan pemrograman ST, untuk yang ST sudah jarang digunakan lagi.